

Capacitação IPv6.br

Segurança em redes sem NAT

IPU6 br

Agenda

- O emulador de redes CORE
- Introdução ao IPv6
- Endereços IPv6
- Plano de endereçamento
- Importância do ICMPv6
- Neighbor Discovery Protocol
- Autoconfiguração Stateless
- Path MTU Discovery
- Segurança IPv6

Importância do ICMPv6

- Versão atualizada do ICMPv4, mas não é compatível
- Desenvolvido como parte substancial da arquitetura IPv6
- Possui funcionalidades para reportar erros no processamento de pacotes, realizar diagnósticos e enviar mensagens sobre as caracteristícas da rede, também presentes no ICMPv4
- Assume funções de protocolo que existem isoladamente no IPv4:
 - ARP (Address Resolution Protocol)
 - RARP (Reverse Address Resolution Protocol)
 - IGMP (Internet Group Management Protocol)

Importância do ICMPv6

- ARP e RARP operam entre as camadas 2 e 3, enquanto ICMPv6 funciona inteiramente na camada 3, sendo encapsulado em pacotes IP
- Firewalls na camada de rede exigem atenção extra com o IPv6, pois podem bloquear funções extremamente básicas como a descoberta de vizinhos e a autoconfiguração
- Adiciona os seguintes protocolos e funcionalidades:
 - MLD (Multicast Listener Discovery)
 - NDP (Neighbor Discovery Protocol)
 - Path MTU(Maximum Transfer Unity) Discovery
 - Mobility Support
 - Autoconfiguração Stateless

Capacitação Publy Neighbor Discovery Protocol (NDP)

- Desenvolvido com a finalidade de resolver os problemas de interação entre os nós vizinhos de uma rede
- Utilizado para verificar a presença de outros nós, determinar os endereços de seus vizinhos, encontrar roteadores e atualizar informações sobre rotas
- Atua sobre dois aspectos primordiais da comunicação IPv6, a autoconfiguração de nós e a transmissão de pacotes
- A autoconfiguração de nós, possui três funcionalidades:
 - Address Autoconfiguration
 - Parameter Discovery
 - Duplicate Address Detection

Publy Neighbor Discovery Protocol (NDP)

- Na transmissão de pacotes entre nós contribui com o funcionamento de seis processos:
 - Router discovery
 - Prefix discovery
 - Address resolution
 - Neighbor Unreachability Detection
 - Redirect
 - Next-hop Determination

Capacitação Publy Neighbor Discovery Protocol (NDP)

- Utiliza as seguintes mensagens ICMPv6 para a realização de suas tarefas:
 - Router Solicitation (RS), tipo 133
 - Router Advertisement (RA), tipo 134
 - Neighbor Solicitation (NS), tipo 135
 - Neighbor Advertisement (NA), tipo 136
 - Redirect, tipo 137

Address Resolution

local fe80::200:ff:feaa:0 global 2001:db8::10/64

MAC 00:00:00:aa:00:00

Cliente2

local fe80::200:ff:feaa:1 global 2001:db8::11/64

MAC 00:00:00:aa:00:01

NS-Source IPv6 2001:db8::11, Dest IPv6 ff02::1:ff00:11

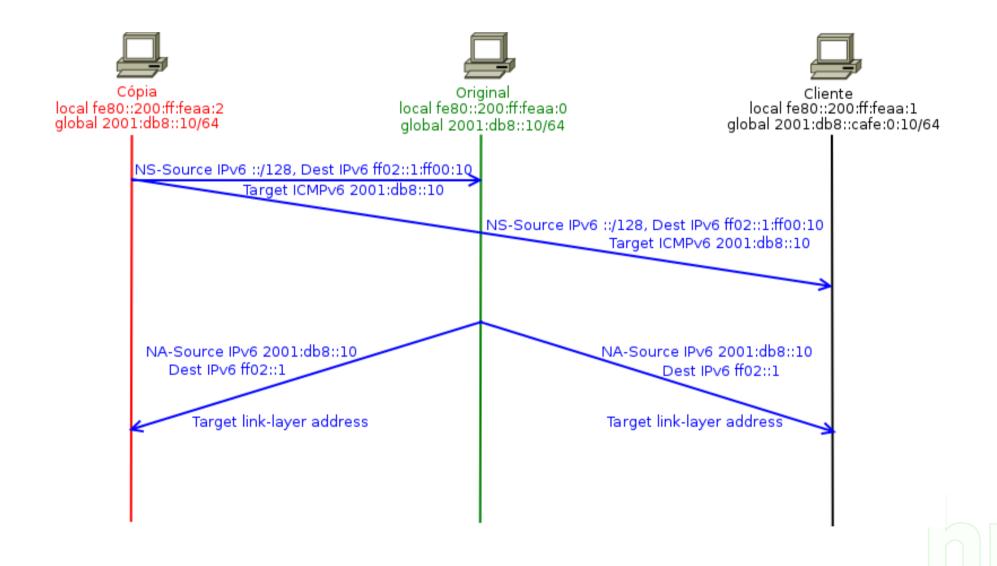
Target 2001:db8::11 Source Link-Layer Address

NA-Source IPv6 2001:db8::11, Dest IPv6 2001:db8::10

Target 2001:db8::11 Target Link-Layer Address

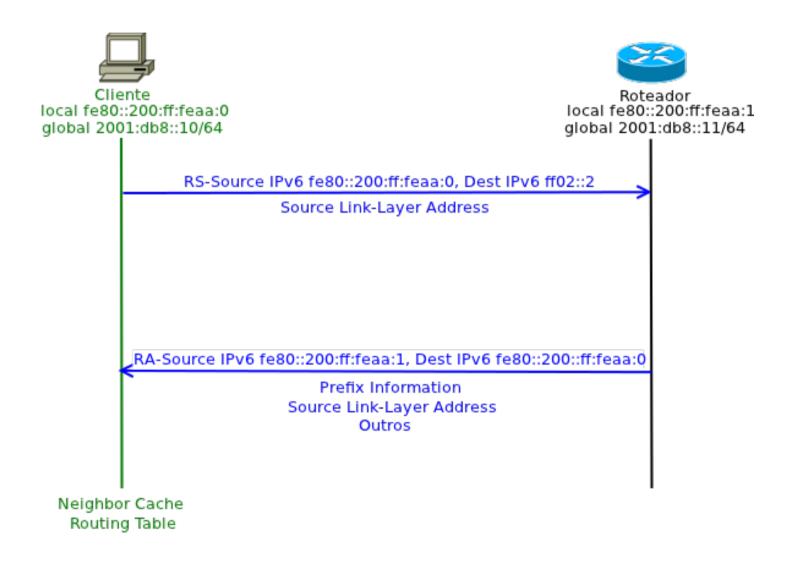
Neighbor Cache 2001:db8::11 -> 00:00:00:aa:00:01

Neighbor Cache 2001:db8::10 -> 00:00:00:aa:00:00

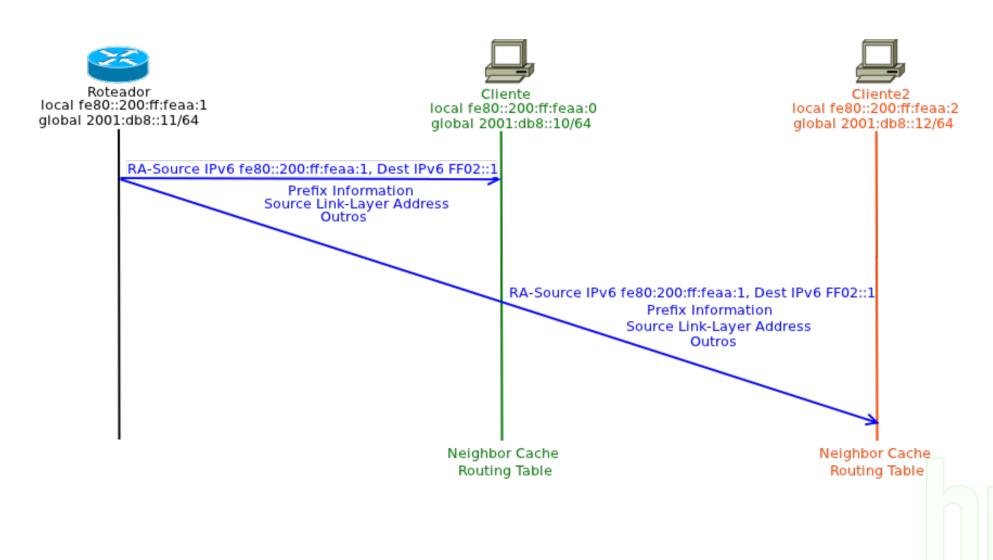


IPU6 br

Detecção de Endereço Duplicado (DAD)



Router Discovery



Router Discovery

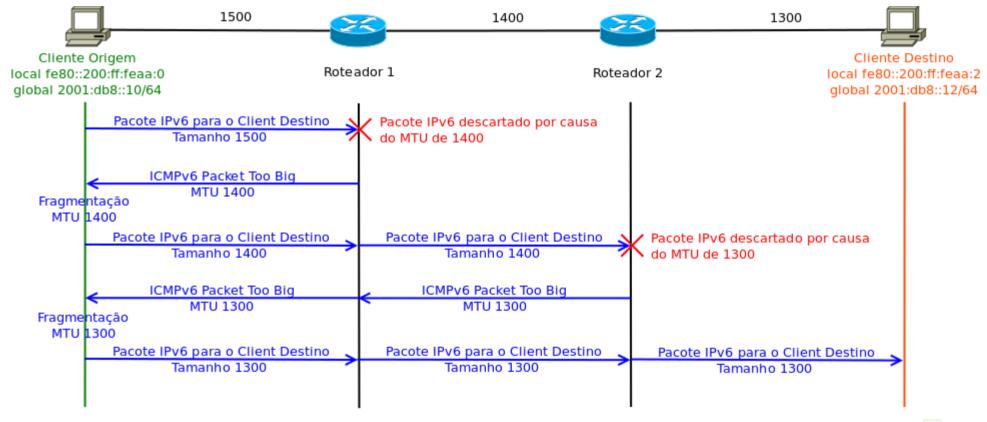
Address Autoconfiguration

- Mecanismo que permite a atribuição de endereços unicast às interfaces...
 - sem a necessidade de configurações manuais
 - sem servidores adicionais
 - apenas com configurações mínimas dos roteadores
- Gera endereços IP a partir de informações enviadas pelos roteadores (mensagens RA)
 - IID pode ser temporário e gerado randomicamente
 - Normalmente é baseado no endereço MAC (Formato EUI-64)
- Se não houver roteadores presentes na rede, é gerado apenas um endereço link local

Address Autoconfiguration

- Um endereço link-local é gerado
 - Prefixo FE80::/64 + identificador da interface
- Endereço adicionado aos grupos multicast solicited-node e allnode
- Verifica-se a unicidade do endereço
 - Se já estiver sendo utilizado, o processo é interrompido, exigindo uma configuração manual
 - Se for considerado único e válido, ele será atribuído à interface
- Host envia uma mensagem RS para o grupo multicast all-routers
- Todos os roteadores do enlace respondem com mensagem RA

Path MTU Discovery


- MTU Maximum Transmit Unit tamanho máximo do pacote que pode trafegar através do enlace.
- Fragmentação permite o envio de pacotes maiores que o MTU de um enlace.
 - IPv4 todos os roteadores podem fragmentar os pacotes que sejam maiores que o MTU do próximo enlace.
 - Dependendo do desenho da rede, um pacote IPv4 pode ser fragmentado mais de uma vez durante seu trajeto.
 - IPv6 fragmentação é realizada apenas na origem.
- Path MTU Discovery busca garantir que o pacote será encaminhado no maior tamanho possível.
- Todos os nós IPv6 devem suportar PMTUD.
 - Implementações mínimas de IPv6 podem omitir esse suporte, utilizando 1280
 Bytes como tamanho máximo de pacote.

IPu6 br

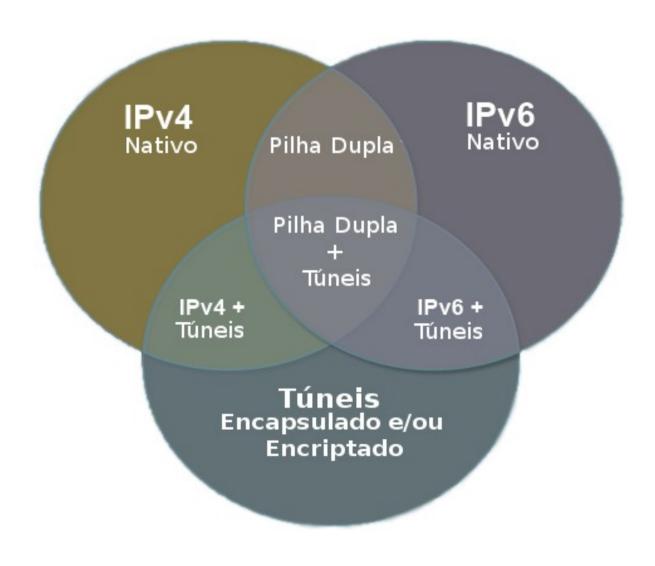
Path MTU Discovery

Capacitação IPv6.br

Segurança em IPv6

Segurança IPv6

- Por ser um assunto relativamente inexplorado muitas lendas existem
- Lendas são baseados em informações incompletas ou mal interpretadas


Lendas sobre segurança IPv6

- "IPv6 é mais seguro que IPv4" ou "IPv4 é mais seguro que IPv6"
- "IPsec é mandatório no IPv6, por isso, ele é mais seguro que o IPv4"
- "IPv6 garante comunicação fim a fim"
- "Se o IPv6 não for implementado na minha rede, posso ignorá-lo"

IPU6 br

Falhas, ataques e defesas no IPv6

Negação de Serviço com DAD

- O ataque consiste em enviar uma resposta de Neighbor Advertisement para todos os pacotes de Neighbor Solicitation recebidos
- Isto faz com que os endereços de tentativa nunca sejam validados, pois os dispositivos irão considerar que os IPs já estão em uso
- Sem IP válido, os novos dispositivos ficam impedidos de utilizar a rede

IPu6 br

Falsificação do Router Advertisement

- Dispositivo que não é um roteador envia mensagens de RA com as possíveis finalidades:
 - Tornar-se o roteador principal da rede, fazendo sniffing ou ataque de man-in-the-middle antes de encaminhar o pacote
 - Anunciar um roteador falso para criar um buraco negro, para onde o tráfego é direcionado, gerando negação de serviço

Mitigação destes ataque ao NDP

- IPv6 possui um protocolo específico para o problema, chamado Secure Neighbor Discovery (SEND)
- Pode-se utilizar ferramentas que monitoram o NDP, por exemplo, NDPmon ou RA Guard
- Pode-se utilizar switch inteligente capaz de rejeitar mensagens de RA em portas que não possuam um roteador conectado
- O IPv4 possuí problema similar, o ARP Spoofing

Varredura de endereços (Scanning)

- Tornou-se mais complexo, mas não impossível
- Com uma mascara padrão /64 e percorrendo 1 milhão de endereços por segundo, seria preciso mais de 500.000 anos para percorrer toda a sub-rede
- Worms que utilizam varredura como era no IPv4 para infectar outros dispositivos, terão dificuldades para continuar se propagando

IPU6 br

Rastreabilidade de Dispositivos

- Quando um dispositivo utiliza autoconfiguração de endereço, o MAC address é usado como base para a geração dos últimos 64 bits
- Estes 64 bits são sempre iguais e formam um identificador único independente da rede
- draft-gont-6man-stable-privacy-addresses-01 também endereça esta questão, pois ao mudar de rede os últimos 64 bits mudam
- https://panopticlick.eff.org/

Firewall

- Numa rede IPv4, onde normalmente se utiliza NAT, este funciona como um firewall stateful, permitindo apenas comunicações originadas de dentro da rede. Numa rede IPv6 não há NAT, então, se o administrador de rede decidir manter uma política de segurança similar a que utilizava com o IPv4, é necessário um cuidado redobrado na implantação de firewalls, a fim de forçar essa política.
- Com a adoção do protocolo IPv6 todos os hosts podem utilizar endereços válidos com conectividade direta a Internet e alcance a todos os hosts da rede interna que tenham IPv6 habilitado

Firewall

- ICMPv6 faz funções que no IPv4 eram realizadas pelo ARP, logo o ICMPv6 não pode ser completamente bloqueado no firewall de borda como ocorria no IPv4
- Recomendações de Firewall baseadas na RFC 4890, detalhada em: NIST SP 800-119, Guidelines for the Secure Deployment of IPv6, December 2010 http://csrc.nist.gov/publications/PubsSPs.html

	Obrigatório não descartar	
Mensagem (Tipo)	Trânsito	Local
Manutenção da Comunicação:	Permite não local quando associado a conexões permitidas	
Destination Unreachable (1) – Todos os códigos	~	~
Packet Too Big (2)	V	v
Time Exceeded (3) – Somente código 0	v	V
Parameter Problem (4) – Somente códigos 1 e 2	V	V
Verificação de Conectividade:	Permite/Nega de acordo com a política de segurança da topologia	
Echo Request (128)	~	~
Echo Response (129)	V	V
Configuração de Endereços e Seleção de Roteadores:	Permitido somente (em tráfego link-local
Router Solicitation (133)		~
Router Advertisement (134)		~
Neighbor Solicitation (135)		~
Neighbor Advertisement (136)		v
Inverse Neighbor Discovery Solicitation (141)		~
Inverse Neighbor Discovery Advertisement (142)		V

	Recomendado não descartar	
Mensagem (Tipo)	Trânsito	Local
Mensagens de Erro:	Permite não local quando associado a conexões permitidas	
Time Exceeded (3) – Código 1	v	~
Parameter Problem (4) – Código 0	v	~
IPv6 Móvel:	Permite não local para dispositivos terminais permitidos	
Home Agent Address Discovery Request (144)	v	
Home Agent Address Discovery Reply (145)	v	
Mobile Prefix Solicitation (146)	v	
Mobile Prefix Advertisement (147)	v	

	Obrigatório não descartar	
Mensagem (Tipo)	Trânsito	Local
Notificação de Recebedores de Multicast Link-Local:	Permitido somente em tráfego link-local	
Listener Query (130)		~
Listener Report (131)		~
Listener Done (132)		~
Listener Report v2 (143)		~
Notificação do Caminho de Certificação SEND:	Permitido somente em tráfego link-local	
Certification Path Solicitation (148)		~
Certification Path Advertisement (149)		~
Multicast Router Discovery:	Permitido somente em tráfego link-local	
Multicast Router Advertisement (151)		~
Multicast Router Solicitation (152)		V
Multicast Router Termination (153)		~

Firewall – Regras ICMPv6

```
# Meus TPs
# IPs destino (todos os IPs locais)
ips destino="2001:db8:d0ca::1"
for ip in $ips destino
do
     # ECHO REQUESTS E RESPONSES (Type 128 e 129)
     $iptables -A INPUT -p icmpv6 --icmpv6-type echo-request -d $ip -j ACCEPT
     $iptables -A INPUT -p icmpv6 --icmpv6-type echo-reply -d $ip -j ACCEPT
     # DESTINATION UNREACHABLE (Type 1)
     $iptables -A INPUT -p icmpv6 -j ACCEPT
     # PACKET TOO BIG (Type 2)
     $iptables -A INPUT -p icmpv6 --icmpv6-type packet-too-big -d $ip -j ACCEPT
     # TIME EXCEEDED (Type 3)
     $iptables -A INPUT -p icmpv6 -j ACCEPT
     $iptables -A INPUT -p icmpv6-j ACCEPT
```

eai br nie br


```
# Meus TPs
# IPs da rede (todos os IPs locais)
ips da rede="2001:db8:d0ca:cafe::/64"
     # Stateful firewall
     echo "Permite pacotes de saida e retorno para todas as conexoes \
estabelecidas"
     $iptables -A INPUT -m state --state RELATED, ESTABLISHED -j ACCEPT
     $iptables -A OUTPUT -m state --state NEW, RELATED, ESTABLISHED -i ACCEPT
for ip in $ips da rede
     do
     # ECHO REQUESTS E RESPONSES (Type 128 e 129)
     $iptables -A FORWARD -p icmpv6 --icmpv6-type echo-request -d $ip -j DROP
     $iptables -A FORWARD -p icmpv6 --icmpv6-type echo-reply -d $ip -j ACCEPT
```


Transição de IPv4 para IPv6

- O IPv6 foi concebido para funcionar junto ao IPv4 em pilha dupla
- Isto não ocorreu e outras técnicas de transição foram concebidas (túneis, traduções etc)
- Transição de IPv4 para IPv6 abre brechas de segurança quando:
 - Rede IPv4 ignora a existência de IPv6, pois computadores e equipamentos que suportam IPv6 podem se comunicar em IPv6 evitando a segurança implementada para IPv4
 - Túneis automáticos são ignorados e a rede IPv4 não trata pacotes encapsulados, permitindo um atacante acessar a rede evitando a segurança IPv4 ou um usuário dentro da rede acessar conteúdo ou redes que seriam bloqueadas se o acesso fosse via IPv4

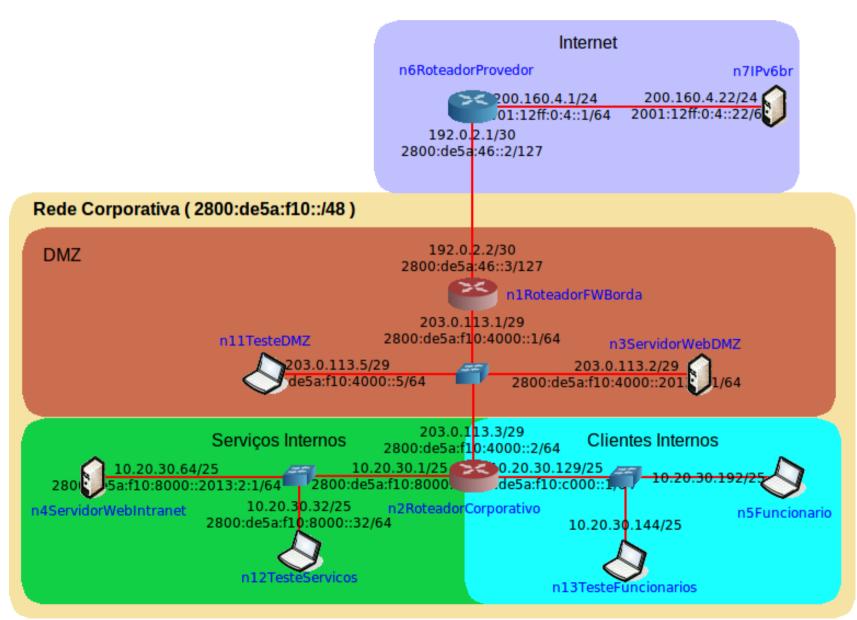
Transição de IPv4 para IPv6

- A RFC 4942 detalha a segurança com relação as técnicas de transição:
 - mesmo que sua rede não tenha IPv6, não o ignore
 - se você não deseja utilizar técnicas de tunelamento automático na sua rede, elas devem ser bloqueadas no firewall
 - técnicas de transição podem depender de servidores públicos não confiáveis

Técnica de Transição	Regra de filtragem
Túnel manual 6over4	IPv4 Protocol == 41
Túnel manual GRE	IPv4.Protocol == 47
Túneis automáticos 6to4	IPv4.Protocol == 41 IPv4.{src,dst} == 192.88.99.0/24
Túneis automáticos Teredo	IPv4.dst == servidores_teredo UDP.DstPort == 3544

Considerações finais

- Segurança em IPv6 é um assunto que ainda tem bastante a evoluir, mas é algo que foi buscado na criação do protocolo, diferentemente do IPv4
- Boas práticas são baseadas em IPv4 e terão de ser modificas quando o IPv6 estiver em mais larga escala
- O fato do IPv6 ser mais novo pode levar a novos ataques que não haviam sido pensados anteriormente
- Não há razão para temer a segurança em IPv6 e informação e treinamento são as melhores maneiras de proteger sua rede



Desafio IPv6

Desafio IPv6

Após a criação de frewalls IPv6 pelo estagiário, alguns problemas foram diagnosticados e deverão ser corrigidos. Segue-se a lista:

- 1. O f rewall IPv6 da máquina dos funcionários ainda não foi configurado.
- 2. Na rede IPv4, devido à escassez de endereços válidos na empresa (e no mundo), utiliza-se NAT para endereçar os dispositivos localizados na área de Serviços e Clientes Internos. Já com o protocolo IPv6, todos os dispositivos receberam endereços globais roteáveis na Internet, permitindo conexões entrantes. Contudo, é preciso configurar o frewall IPv6 no roteador dessas redes corretamente para que apresente um comportamento semelhante ao NAT em relação às conexões entrantes, ou seja, permitir apenas o encaminhamento de pacotes que sejam relacionados a requisições internas da rede corporativa.

Desafio IPv6

- 3. Os serviços existentes nos servidores n3ServidorWebDMZ e n4ServidorWebIntranet não estão acesíveis. Descubra quais serviços estão ativos em cada servidor e corrija as regras de f rewall IPv6 para que cada serviço possa ter acesso interno, externo ou ambos.
- 4. Algumas máquinas utilizavam técnicas de transição baseadas em encapsulamento (6to4 e Teredo) para obter conectividade IPv6. Como agora é fornecida conectividade nativa via IPv6, deve-se bloquear a saída de pacotes que utilizam essas técnicas.

Desafio IPv6

5. As máquinas da rede corporativa não conseguem acessar a Internet via IPv6. Os testes realizados em n3ServidorWebDMZ e n5Funcionario utilizaram o comando ping6 -s 1500 2001:12ff:0:4::22.

6. A rede corporativa está sofrendo um ataque vindo da Internet devido a algum erro no f rewall IPv6 no Roteador de Borda.

Desafio IPv6

IMPORTANTE

- A ordem da inserção de regras no sistema de f rewall é importante, uma vez que o recebimento do pacote utilizará a primeira correspondência para uma dada listagem de regras.
- As máquinas de teste (n6RoteadorProvedor, n7IPv6br, n11TesteDMZ, n12TesteServicos e n13TesteFuncionarios) não devem ser alteradas.
- Todos os arquivos de conf guração de f rewall já foram criados e estão localizados no Desktop da Máquina Virtual.
- A correção do Desaf o será baseada nas RFCs citadas e nas tabelas fornecidas, conforme o "Material de Consulta para o Desaf o IPv6.br na Campus Party Brasil 2013".
- A Equipe IPv6.br efetuará a correção em ordem crescente dos problemas listados.

Desafio IPv6

- Para descompactar o arquivo DesafioCPBR6.zip na Área de Trabalho:
 - Abra o arquivo e abra o diretório DesafioCBR6
 - Selecione todo o conteúdo
 - Clique em Extract
 - Clique em Desktop (menu à esquerda)
 - Clique em Extract novamente
- Senha: asenhaeuesqueci

